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1. Validation of a model
« Validation set approach
« K-fold cross-validation
 Leave-one-out cross validation
2. Bootstrap
« Introduction to Bootstrap

« Bootstrap confidence intervals

 Bootstrap tests

3. Introduction to EM
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MAIN TEXTBOOKS

Monographs
on Statistics and
Applied Probability 57

An
Introduction
to the

Bootstrap

Bradley Efron
Robert J. Tibshirani

CHAPMAN & HALL/CRC

Springer Series in Statistics

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Data Mining, Inference, and Prediction

A.C. Davison D.V. Hinkley

Model validation:
The Elements of
Statistical Learning
By Hastie, Tibshirani,
Friedman

Bootstrap:
An Introduction to the Bootstrap
By Efron, Tibshirani

Bootstrap Methods and their
Applications
By Davison, Hinkley

PAWRN recoanimion [ ILSAE
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% et < Pattern Recognition and
- == Machine Learning

By Bishop
Download at this link
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WHAT IS STATISTICS?
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THIS 15 YOUR MACHINE (EARNING SYSTEM?

YUP! YOU POUR THE: DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

alessia.pini@unicatt.it
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REUTERS Business Markets World Politics TV More

BUSINESS NEWS OCTOBER 10, 2018 / 5:12 AM / A YEAR AGO

Amazon scraps secret Al recruiting tool that
showed bias against women

Biased
data ‘ Biased

information /
knowledge

Wrong
model
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MODEL ACCURACY

Qe

How can we assess if a model is working correctly? How to choose between
different models?

Is there a method that dominates all other methods over all possible data sets?

alessia.pini@unicatt.it
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MODEL ACCURACY

Qe

How can we assess if a model is working correctly? How to choose between
different models?

Is there a method that dominates all other methods over all possible data sets?

There is no such a thing as free lunch.
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How can we assess if a model is working correctly? How to choose between
different models?

Is there a method that dominates all other methods over all possible data sets?

There is no such a thing as free lunch.

2

No one method dominates all other methods over all possible data sets.

We need methods to assess if how well the estimated model matches the data.

alessia.pini@unicatt.it

12



AP UNIVERSITA
R ool RISKS OF A WRONG MODEL
X < del Sacro Cuore

A Underfitting / Overfitting

T T T T T T
0 1 2 3 4 5

X

Underfitting: model is too simple to follow data

Overfitting: model is too complex, and follows too closely data (affected by error)
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A Underfitting / Overfitting

T T T T T T
0 1 2 3 4 5

X

Underfitting: model is too simple to follow data

Overfitting: model is too complex, and follows too closely data (affected by error)

In both cases, we make an error in estimating a new observation

alessia.pini@unicatt.it
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Model accuracy in regression can be evaluated using the mean square error
(MSE):
1 < ~
2
MSE = — Z(yz — f(xz-l, “ e ,xip))

n
A Problem

1=1
* The model is fitted using the training set, and MSE is computed on the same
data.

« The MSE is generally low when the model is flexible.

 Itis always possible to find a model with zero MSE (e.g., polynomial
regression with n-1 coefficients).

alessia.pini@unicatt.it 15
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Idea:
Compute the MSE on a different data set.

Test MSE: mean square error for test observations (new observations that

were not used to train the model).

AN

MSETEST = ]E[(ynew,i — f(xnew,ila SR 7xnew,ip)2]

Such quantity depends on the data distribution, which is generally unknown.

We need a way to estimate it.

We would like to compute the error that a model is committing in estimating a

new observation.

alessia.pini@unicatt.it 16
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(_,) The validation set approach consists in splitting the original
dataset into a training set (used for fitting the model) and a test set
(used for estimating the MSE).

1,2, ..., n
I 12, 34, ..., 2 I I 7y 555 «ee 20 I
Training set Test set
/\ A 2
MSErgsT = E (yi — i)
Nitest .
1€test
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MEASURING MODEL ACCURACY:
VALIDATION SET

Example on simulated data

°
.
°
° ° i
° * o *
°
° o0
o0 s d
. °
°
°
°
°
°
o0
°
I I I I
1 2 3 4

alessia.pini@unicatt.it

18



4% o MEASURING MODEL ACCURACY:

ez CATTOLICA

VALIDATION SET

Example on simulated data

10

Test set MSE

degree of polynomial
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VALIDATION SET

Example on simulated data

9_
g
w_
w ©
N
>
3
2 o
. o
/o
a o I/
_ - (o]
740%0
8
o_

degree of polynomial
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Pros / Cons:

+ Easy to implement, very fast to run.
m= The error estimate depends on the initial choice of training/test set.

== Only a subsample of the original data set is used to train the model. Hence,
the fitting error on the entire dataset is overestimated.

alessia.pini@unicatt.it
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Example: estimation of MSE of a linear regression.

alessia.pini@unicatt.it
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» The dataset is randomly split into K parts (folds) of approximately equal

dimension.

Example: K=5

alessia.pini@unicatt.it



% s MEASURING MODEL ACCURACY:

A CATTOLICA

WS K FOLD CROSS-VALIDATION

» The dataset is randomly split into K parts (folds) of approximately equal

dimension.

* Repeat for each fold k=1,2,...,K:
« The fold k is used as test set and all other are together the training set.

« Compute the average squared prediction error for each fold.

Example: K=5
Test set I Training set Training set Training set Training set
MSE =1.4

alessia.pini@unicatt.it 24
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WS K FOLD CROSS-VALIDATION

» The dataset is randomly split into K parts (folds) of approximately equal

dimension.

* Repeat for each fold k=1,2,...,K:
« The fold k is used as test set and all other are together the training set.

« Compute the average squared prediction error for each fold.

Example: K=5
Training set I Test set I Training set Training set Training set
MSE = 2.1

alessia.pini@unicatt.it 25
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S8% K-FOLD CROSS-VALIDATION

» The dataset is randomly split into K parts (folds) of approximately equal

dimension.

* Repeat for each fold k=1,2,...,K:

« The fold k is used as test set and all other are together the training set.

« Compute the average squared prediction error for each fold.

« Average the obtained results.

Example: K=5
I 1.4 2.1 I 1.6 I 1.3 1.8 I
— _J
~
1.64
alessia.pini@unicatt.it 26
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Pros / Cons:

+ Largely used.

== The error estimate still depends on the initial partition into folds, even

though the dependence is weaker than in the case of validation set.

== Only a subsample of the original data set is used to train the model. Hence,

the fitting error on the entire dataset is overestimated.

+ However, the test set is usually of a smaller size wrt the validation set, so the

bias is lower.

+ Computationally more expensive than validation set approach, but generally
affordable.

alessia.pini@unicatt.it 27
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Special case: if K=n we obtain a method called leave-one out cross validation
(LOOCYV). At each iteration, the test set only contains one observation.

—_— 1 n —_—
2
MSETEST — E Z(yz - f(—z) (xila S 7372'19))
=1
Prediction error on the ith Model estimated using as training set all
observation observations except the ith one
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Special case: if K=n we obtain a method called leave-one out cross validation
(LOOCYV). At each iteration, the test set only contains one observation.

Pros / Cons:

+The error estimate does not depend on the initial partition into folds, since in
this case it is not random.

+Almost all data are used for fitting the model, so the error is not
overestimated.

m= Different iterations gives correlated error estimates, since the training sets
are very similar between each other. Therefore, the final estimate is affected
by high variance.

== If n is large, LOOCV is computationally very expensive.

|:>A k-fold cross-validation with 5-10 folds is typically a good compromise.

alessia.pini@unicatt.it
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LOOCV

Example: 3-folds

Test set MSE

degree of polynomial

alessia.pini@unicatt.it
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Example: 5 folds

Test set MSE

(€0 D)

degree of polynomial
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Example: LOOCV

10

Test set MSE

degree of polynomial
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